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Abstract: Angiogenesis is recognized as a crucial component of many neurovascular diseases 
such as stroke, carcinogenesis, and neurotoxicity of abused drug. The ability to track 
angiogenesis will facilitate a better understanding of disease progression and assessment of 
therapeutical effects. Optical coherence angiography (OCTA) is a promising tool to assess 3D 
microvascular networks due to its micron-level resolution, high sensitivity, and relatively 
large field of view. However, quantitative OCTA image analysis for characterization of 
microvascular network changes, including accurately tracking the progression of 
angiogenesis, remains a challenge. In this paper, we proposed an angiogenesis tracking 
algorithm which combines improved vessel segmentation and brain boundary detection 
methods to significantly enhance time-lapse OCTA images for quantification of 
microvascular network changes. Specifically, top-hat enhancement and optimally oriented 
flux (OOF) algorithms facilitated accurate segmentation of cerebrovascular networks 
(including capillaries); graph-search based brain boundary detection enabled coregistration of 
3D OCTA data sets from different time points for accurate vessel density assessment and 
analysis of their changes in various cortical layers. Results show that this algorithm 
significantly enhanced the accuracy of vessel segmentation compared to Hessian method. 
Application to chronic cocaine intoxication study shows effectively reduced errors in chronic 
tracking of microvasculature and more accurate assessment of vessel density changes induced 
by angiogenesis. 
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Optical Coherence Angiography (OCTA) is a non-invasive and label-free method to obtain 
high contrast 3D image of blood vessel network in vivo utilizing the dynamic OCT speckle 
signal induced by moving red blood cells [1]. For example, B. J. Vakoc, etc, applied optical 
frequency domain imaging to monitor tumor vascular change in response to antiangiogenesis 
therapy [2]. Vivek J.Srinivasan etc used OCT to study the progress in experimental stroke by 
measuring capillary perfusion, vessel diameter and cerebral blood flow volume [3]. Zhongdi 
Chu etc detected and assessed retinal vascular abnormalities with multiple quantitative 
indexes obtained from OCTA [4]. J. You, et al., showed microvascular adaptation in mouse 
cortical brain resulting from chronic cocaine exposures [5]. Different image acquisition and 
processing methods have been introduced in these studies tools to identify changes in the 
microvascular network caused by neurovascular diseases; however, more accurate 
quantitative assessment of OCTA images is needed to better understand angiogenesis-
associated disease mechanisms and to develop more efficient therapeutic strategies. 

Two major issues remain for OCTA to track chronic angiogenesis. Firstly, the accuracy of 
widely used quantitative tools such as vessel area density and vessel skeleton density [2, 4, 6] 
rely on the quality of the segmented binary vessel image. Several approaches for automatic 
vessel segmentation on OCTA images have been reported, among which the simplest method 
is to apply a local adaptive threshold to obtain vasculature with a higher intensity than 
background tissue [7]. However, this method suffers from its tolerance to background noise 
and sensitivity to minute vessels. Another method is to use a matched filter for vessel 
enhancement [8]. Although this method presents better performance on noise suppression, it 
is limited by the assumption that cross-sectional intensity profile of a vessel follows a 
Gaussian shape, which is not the case in OCTA images. Hessian-based methods were 
frequently applied to segmenting OCTA images [5, 9, 10], which utilizes the ratio of 
eigenvalues of Hessian matrix to distinguish tubular structures (e.g., vessels) from other 
structures. However, visual inspection and quantitative evaluation show that Hessian method 
tends to generate vessel discontinuity due to its blurring effect on small vessels. Overall, these 
methods are able to effectively segment vessels with high SNR, but suffer from compromised 
sensitivity for small vessels with a low image contrast. Considering the fact that angiogenesis 
leads primarily to capillary density increase [11], the errors for small vessel segmentation 
may likely result in a biased assessment of angiogenesis. Secondly, the comparative study 
must be made on identical tissue region to accurately assess microvascular network changes 
over time. However, common rendering 3D software fails to select identical volume from 
each data set because of irregular cortex surface and variable mounting angle. This limitation 
can lead to an inconsistent pattern of angiogenesis progression. 

To address these two issues, we report an angiogenesis progression tracking algorithm, 
which combines a new vessel segmentation method and an automatic brain boundary 
detection method. The former enhances the performance on segmenting microvasculature in 
OCTA images based on top-hat enhancement [12] and optimally oriented flux (OOF) 
[13].The latter detects brain boundary by graph search after applying dual filtering to remove 
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reflection artifacts, by which changes in microvasculature and flows in different cortical 
layers can be analyzed and characterized. We compare the method with Hessian for 
improving the accuracy to quantify microvascular density and demonstrate the efficacy for 
tracking chronic cocaine induced angiogenesis in different cortical layers of mouse brain. 

2. Materials and methods 

2.1 Animal preparation 

Mice (C57/B6, male, 12-14 weeks of age, Jackson Lab) were anesthetized using 2.0-2.5% 
inhalational isoflurane. Then, a rectangular cranial window (roughly 2.5 × 2.5mm2) was 
created above the frontal cortex. The exposed cortical surface was covered by 2% agarose gel 
and affixed with a 100μm-thick glass coverslip using biocompatible cyanocrylic glue. Dental 
cement was used on edges of the window to secure its attachment with skull. For chronic 
cocaine study, mice received intraperitoneal (i.p.) injections of cocaine (30mg/kg/day/each) 
for consecutive 28 days during which the animals underwent periodical µOCTA scans. All of 
the animal experiments were approved by the Institutional Animal Care and Use Committee 
of Stony Brook University. 

2.2 System setup 

A ultrahigh-resolution optical coherence tomography setup (μOCT) was used to acquire in-
vivo structural (μOCT) and μOCTA images of the cerebral microcirculatory networks [14], in 
which an ultra-broadband light source(λ = 1310nm; ΔλFWHM≈220nm) was used for 
illumination to achieve 2.5µm axial resolution. The beam exiting from sample arm is 
collimated to ф5mm, steered transversely by a galvo scanner (VM500, General Scanning) and 
then focused by an achromatic doublet (f16mm/NA0.25) onto mouse cortex. The lateral 
resolution is determined by the effective NA to be 5.17μm. The backscattered light from 
mouse cortex was recombined with reference light in the detection fiber connected to a 
custom spectrometer in which the interference fringes spectrally encoding the depth profile 
(A-scan) were detected by a fast linescan InGaAs CMOS camera (2048-pixels; GL2048, 
Sensors Unlimited) synchronized with sequential transverse scans for image acquisition. 
Meanwhile, GPU with custom GUI programming was implemented to enable real-time FFT 
for rendering and display of 2D/3D µOCT images. Specifically, 4 consecutive B-scans (x-z 
plane) at each cross section (y-axis) were acquired at 10 fps to derive a cross-sectional μOCA 
(x,z) image as its relative standard deviation [15]. 

2.3 Algorithm overview 

The overview of our algorithm is shown in Fig. 1, which outlines the two-step architecture of 
our algorithm design and development. First, the brain boundary was detected on OCT 
intensity B-scan by a graph search method after cover glass reflection artifacts removed. The 
detected brain boundary was applied on OCTA B-scan to segment brain volume. The volume 
was split into 4 layers and OCTA maximum intensity projection image (MIP) was generated 
from each layer. Then the vessels including capillaries from the OCTA MIP images were 
identified by the proposed vessel segmentation method combining top-hat enhancement and 
OOF. Enhanced OCTA MIP images and density map were obtained by using binary vessel 
mask. Our algorithm was implemented with custom software written in Mablab 2016a 
(Mathworks, Natick, MA). 
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Fig. 1. Overview of the proposed angiogenesis tracking algorithm. 

2.4 Vessel segmentation 

To accurately segment microvasculature, we developed an algorithm based on top-hat filter 
and optimally oriented flux (OOF) for small vessel detection. Figure 2 shows the schematic 
diagram for vessel segmentation. Top-hat filtering is for preprocessing to reduce noise and 
enhance linear structure, in which an opening of reconstruction operation is first applied to 
the original image using linear structure element of length l  at different angles. Then, 
multiple top-hat operations with the same structure element are utilized until a maximum 
response is yielded, i.e., contrast enhanced image. Here, length l  is selected according to 
capillary diameters (e.g., 5-8µm) to improve the contrast of microvasculature (Fig. 2(d)). 

 

Fig. 2. A schematic diagram of the proposed method. a) original OCTA image; b) anisotropic 
diffusion filtering was applied to enhance boundaries of large vessels; c) large vessel mask was 
generated by thresholding filtered image b); d) micro vessels enhanced by top-hat 
enhancement method; e) vesselness map for microvasculature was obtained by applying OOF 
on top-hat enhanced image d); f) global thresholding and morphological filtering were 
performed on the vesselness map to generate a microvascular mask; g) the final segmented 
vascular image by merging c) and f). 

After preprocessing with top-hat for contrast enhancement, OOF is applied for vessel 
segmentation (Fig. 2(e)). OOF detects vessel structure by measuring oriented gradient flux 
which is the amount of gradient projected along direction ρ̂ flowing in or out a local 2D circle 

or 3D sphere. If the projected direction ρ̂ matches the cross-sectional direction, the oriented 

gradient flux achieves the maximum value. The oriented gradient flux for a 2D image is given 
by [13]: 
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where G is Gaussian function with a scale factor of 1 used to obtain image gradient of I , ρ̂ is 

the projected direction of outward gradient flux, r  is the radius of circle, ˆh nr= is the relative 
position vector, rS∂ is the boundary of the circle. ( , ; )f x rρ can be written in quadric form of 
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detects vessel structure by finding the optimal projection direction that maximizes ( , ; )f x rρ , 

a procedure to solve eigen decomposition problem on matrix ,r xQ  from which two 

eigenvalues can be computed and ordered as 1| |λ  > 2λ . To eliminate false response on edge 

of OOF, a gradient antisymmetric function, oriented flux antisymmetry vector, was used to 
measure edge response [16]: 
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Then, the antisymmetry gradient along vessel cross-sectional direction can be calculated as: 
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where 1v  is the eigenvector corresponding to 1λ . Using this function to compensate the false 

positive response on edge, the final vesselness is computed as: 

 1 1( ) max ( ) ( , ; )r Rv x Q x v rλ∈= −  (6) 

where 1max ( )r R λ∈  is the maximum value of 1λ  over scales r . However, it was found that 

OOF’s response to large-scale objects was attenuated by vessel’s irregular boundary. To solve 
this problem, we utilize OOF just for detection of microvasculature by selecting a small 
maximum scale value. Since large (e.g., branch) vessels have high contrast, they can be 
extracted by binarizing the image with a high global threshold. The threshold method does 
not take vessel shape into account, thus an anisotropic diffusion filtering is performed to 
enhance boundaries of large branch vessels before image binarization (Fig. 2(b)-2(c)) [17]. 
With both microvasculature and large vessel masks derived, the final segmented image is 
generated by merging (i.e., ‘or’ operation) these two masks (Fig. 2(g)). 

2.5 Automatic segmentation of brain surface 

To accurately evaluate the progression of angiogenesis, there is a need to compare the 
vascular density change of identical brain tissue over time. However, manual segmentation 
using commercial 3D image rendering software may fail to extract identical brain tissue from 
time-lapse image cubes (e.g., over days and even weeks) due to potential variations in head 
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mounting angle and uneven brain geometrical shapes. To enable extraction of identical brain 
tissue from the acquired images at each time point, we implemented an automatic brain 
boundary detection algorithm. 

 

Fig. 3. a) Original OCT cross sectional intensity image of mouse frontal cortex. Strong 
reflection from cover glass is highlighted in the yellow dash line. b-c) Response of step edge 
detector(first order derivative of Gaussian) and ridge detector(second order derivative of 
Gaussian) to OCT image in a) respectively. d) Binary mask of cover glass noise. e-f) Boundary 
detection before and after artifact removal. 

Direct boundary detection may fail due to strong reflection from the cover glass of cranial 
window as highlighted by the dash box in Fig. 3(a). Thus we first use Laplacian of Gaussian 
(LoG) filter in combination with first order of Gaussian filter to remove the artifacts. The 
cross-section of glass artifacts often has a symmetrical profile, so LoG filtering gives high 
response to a glass surface. However, as shown in Fig. 3(c), it yields strong response not only 
to a glass interface but also to a sharp edge of tissue, which leads to many false detections if 
the output image is directly binarized. Thus first order of Gaussian filtering (FoG) is used to 
suppress the edge response of LoG. Figure 3(b) shows that despite the high turnouts at the 
edge of tissue and glass, that at glass center is close to zero or eliminated. This allows us to 
identify glass by selecting pixels with high LoG output but low FoG output. The thresholding 
matrix used to binarize LoG response can be constructed as: 

 * ( ( 0))*T Fr mean Lr Lr t= >  (7) 

where Fr  and Lr  are responses of 1st-order Gaussian and LoG filters, respectively, and t is 
a constant. The final mask of cover glass is shown in Fig. 3(d), which can be applied to the 
original OCT image to remove glass artifacts. 

After artifacts from glass surfaces are removed, the brain boundary is delineated by a 
graph search method, which treats pixels in an image as graph nodes and assigns weights to 
edges between them [18–20]. We first define the image gradient using Sobel operator: 

 2 2S Sv w Sh= + ⋅  (8) 

where Sv and Sh are the response of vertical and horizontal Sobel operator and w  is a weight 
to enhance the horizontal structures. Then, a normalized gradient graph is established as: 

 
min( )

1 ( )
max( ) min( )

S S
C

S S

−= −
−

 (9) 

where C is a normalized value, which is low for brain boundary. Here boundary detection is 
equivalent to search for the path with a minimal overall graph cost ( , )t i j  defined as: 

 3 3( , ) min ( ( 1, )) ( , )m j jt i j t i m C i j= − += − +  (10) 
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This shortest path problem can be easily solved by dynamic programming algorithm [21]. 
Figure 3(e) shows boundary detection result before artifacts removed. Due to attraction of 
reflection artifacts, graph search method fails to localize the brain boundary. In comparison, 
boundary is successfully detected after removing artifacts in the preprocess (Fig. 3(f)). 

 

Fig. 4. Illustration of OCTA image enhancement. a) original en face OCTA image. b) 
enhanced OCTA image using contrast limited adaptive histogram equalization and segmented 
vessel mask. a’)-b’) are zoom-in images corresponding to red box in a)-b). 

2.6 OCTA image enhancement 

To better visualize the microvascular network changes in angiogenesis progression, we 
applied the binarized vessel mask to enhance the original OCTA image. The contrast of 
original OCTA images is improved by contrast limited adaptive histogram equalization 
(CLAHE) [22]. Amplified background noise and boundary blurring induced by CLAHE are 
minimized by multiplying the enhanced image with the binary vessel mask. Figure 4(a-a’) 
shows that the raw OCTA image (MIP) suffers from nonuniform signal and background 
noise, thus low-contrast microvasculatures are not clearly resolved. After enhancement with 
CLAHE and binary vessel mask, the OCTA image shows overall significantly improved 
signal-to-noise ratio and the boundaries of microvasculature network are sharp and well 
defined. 

2.7 Vessel density quantification 

To quantify brain microvascular density, the microvascular network is skeletonized from the 
segmented vessel mask using a skeleton algorithm in ImageJ [23]. In the evaluation of the 
segmentation algorithm, the vessel skeleton of the ground-truth mask was manually corrected 
to avoid the bias induced by skeletonization. An adaptive rolling window is applied on the 
skeleton map to allow for spatially resolved density measurement. The size of window is 27 × 
27 pixels in our study. The vessel density within a local window is quantified by a fill factor 
(FF) as: 

 
  #

FF
  #   

Total skeleton pixel

Total pixel of window
=  (11) 

Then, a spatial resolved density map can be obtained by moving the window in both vertical 
and horizontal directions. 

2.8 Verification of results 

Dice similarity coefficient (DSC) [24] is used to quantitatively evaluate the results from our 
vessel segmentation method, which is defined as: 

 
2

2

TP
DSC

TP FP FN
=

+ +
 (12) 

                                                                              Vol. 8, No. 12 | 1 Dec 2017 | BIOMEDICAL OPTICS EXPRESS 5611 



where TP, FP, and FN are true positive, false positive, and false negative rates. DSC has a 
restricted range of [0,1], where a larger value indicates higher similarity between two 
segmentation results. The ground-truth vessel masks used for quantitative evaluation were 
performed by two different specialists. We defined vascular density error to compare vascular 
density obtained from binary vessel masks of different segmentation methods, which is given 
as: 

 
VD GT

DensityError
GT

−
=  (13) 

where VD is vessel density obtained from masks of automatical methods and GT is the 
ground truth of vessel density obtained from manual segmentation mask. 

3. Results 

3.1 Evaluation of vessel tracking 

 

Fig. 5. Segmentation results and corresponding skeletons. a) original OCTA image projected 
from a subvolume data (100µm). b) manual segmentation. c) Hessian method. d) OOF method 
with top-hat enhancement. a’)-b’) are zoom in images corresponding to red boxes. c’)-d’) are 
zoom in images overlaid on manual segmentation mask in which blue area indicate false 
negative and orange area indicate false positive. 

We compared our OOF method with Hessian method that has been frequently used to 
delineate vessel structures in OCTA images. Figure 5 compares the vessel segmentation 
results in which the upper panels show a raw MIP of 3D OCTA (a), manual segmentation as 
ground truth for comparison (b), automatic vessel segmentation using the hybrid method [25] 
combining intensity-based method and Hessian matrix with scales of 2≤σ≤10 (c), and the 
segmentation using our proposed method with the radius of local circle in OOF set to 1≤r≤5 
(d). The lower panels (a’-d’) are the corresponding zoom-in images to show pixel-wise 
comparison among these methods. False-positive (FP) and false-negative (FN) pixels were 
highlighted in orange and blue colors, respectively. The vessel skeletons generated from each 
segmentation were overlaid with vessel masks for a better evaluation. 

As described above, Hessian method has poor performance on segmenting microvascular 
of low contrast and microvascular adjacent to other large structure. As OOF measures the 
gradients of a local circle which only achieves the maximum value when the circle touches 
vessel boundary, it has less chance than Hessian matrix method to extend beyond the 
boundary of target vessel to the structure in the vicinity. As a result, OOF has better 
performance on detecting small vessels especially those adjacent to large structures (e.g., 
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veins or arteries). In addition to avoiding inclusion of nearby objects, OOF can retain the 
sharpness of vessel edges because it does not rely on Gaussian kernel with different scales for 
multiscale detection. With additional contrast enhancement by top-hat preprocessing, it was 
found that OOF was able to accurately detect minute microvasculature (weak capillary flows) 
from raw images. As shown in Fig. 5(c’), Hessian method missed many small vessel 
segments in the microvascular network. In comparison, OOF was able to significantly 
improve the microvascular network continuity. For instance, 2 red arrows point to 2 capillary 
fragments which were missed by Hessian method but were fully restored by OOF in Fig. 
5(d’). In addition, 3 green arrows point to 3 capillary fragments adjacent to large branch 
vessels missed by Hessian method but segmented by OOF (Fig. 5(d’)), showing that OOF can 
effectively reduce false negative rate. Due to the close correlation between vessel mask and 
skeleton, OOF leads to improved accuracy for vessel skeletonization as shown in Fig. 5. In 
terms of capillary detection, a great number of skeletion fragments were observed as a result 
of errors of the Hessian mask (i.e., blue highlights in Fig. 5(c’)); whereas the skeleton 
network derived from OOF vessel mask (Fig. 5(d’)) matched well with that of the manual 
segmented mask (Fig. 5(b’)). 

To quantitatively evaluate the segmentation performance, results from OOF and Hessian 
methods based 8 OCTA MIP images were compared using Dice similarity coefficient (DSC) 
as defined in Eq. (13). Figure 6(a) shows that the DSC of segmentation by OOF is 
0.848 0.024± , which is close to ground truth (DSC = 1); whereas DSC by Hessian method 
(0.692 ± 0.063) is significantly lower (p<0.05, n = 8). This validation result is consistent with 
those shown in Fig. 5 that the new OOF method is able to segment more microvessels, 
resulting in a closer agreement with the ground truth. 

Additionally, Fig. 6(b) indicates that based on statistical analysis (n = 8 OCTA images), 
the error of vascular density of Hessian method (34.1% ± 6.1%) is significantly reduced to 
3.6% ± 2.1% by OOF. This result shows that OOF is able to more accurately quantify 
vascular density for quantitative tracking of angiogenesis. 

It must be noted that both OOF and Hessian methods share a very similar computational 
frame-work. The major difference is the way to construct the matrix which encodes the 
gradient information of a vessel. The computational complexity of constructing Hessian 
matrix is O(Nlog(N)) if the image is convolved with a Gaussian kernel in Fourier space. The 
matrix of OOF in Eq. (3) can also be computed using fast Fourier Transform, and the overall 
computational complexity is the same O(Nlog(N)) [13]. 

 

Fig. 6. a) DSC of segmentation by Hessian (green) and OOF (orange) methods. b) OOF 
effectively reduces the error of the calculated vascular density compared with Hessian method. 

3.2 Brain layer segmentation 

After removing glass artifacts, the boundary was detected on an OCT intensity B-scan and 
then as a mask applied to the corresponding OCTA B-scan as shown in Fig. 7(a) and Fig. 
7(b), respectively. With this process performed on all B-scans in 3D OCT data set, we divided 
3D OCTA volume into 4 layers which roughly cover the range of cortical layers I to IV 
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[26](Fig. 7(d)). Compared with the original 3D volume (Fig. 7(c)), we observed that the 
artifacts above brain surface as indicated by yellow arrows are removed. To further 
demonstrate the effectiveness of the proposed method, we compared MIP images from tissue 
volume that were respectively acquired from a common rendering software and the proposed 
boundary detection method at different time points. MIP images by manual segmentation 
with commercial software show inconsistent shadows and patterns of vasculature at two time 
points (upper panel, Fig. 7(e)), likely resulting from irregular brain surface and inaccurate 
optical alignment (animal head mounting differences). However, with our boundary detection 
method, such inconsistency and artifacts are well compensated and the vascular patterns in 2 
images are matched (lower panel, Fig. 7(e)), thus facilitating more solid quantitative 
comparisons. 

 

Fig. 7. Implementation of automatic brain segmentation. a)-b) Boundary was detected on OCT 
cross-sectional intensity image and then applied on OCTA image. c) Original 3D volume of 
OCTA images. Arrows are used to highlight noise before applying brain boundary detection. 
d) 3D volume of OCTA is segmented into four layers. e) MIP images at two time points from 
maunal segmentation with commercial software and the proposed boundary detection method. 

3.3 Chronic cocaine elicited angiogenesis 

Cocaine has been reported to induce acute decrease in cerebral blood flow (CBF) and cerebral 
blood volume [27, 28]. In addition, chronic cocaine abuse can lead to cerebral hypoperfusion 
and thus hypoxic environment which may trigger the cascade of releasing angiogenetic 
agonists [29]. In this section, we utilized proposed segmentation method to track angiogenesis 
progression over cocaine treatment time on different layers of frontal cortex. The enhanced 
OCTA images introduced before were performed to better visualize the vascular network 
change before and after cocaine induced angiogenesis. To investigate chronic effect of 
cocaine, we longitudinally imaged mice frontal cortex every 7 days for consecutive 21 days. 
The Fig. 8(a) compares OCTA images of full thickness cortex (400µm) at day 1 and day 21. 
The zoom-in images corresponding to blue boxes clearly shows vessel density at day 21 has 
dramatic increase than that at day 1. With help of enhanced OCTA image, newly grown 
microvasculature can be easily identified as indicated by red rows. Figure 8(c) presents 
quantification of vessel density change of full thickness cortex during cocaine treatment. The 
vessel density from baseline (day 1) to 3 weeks after cocaine exposure increased by 12.5% 
± 1.75%(m = 7, p<0.05). We further examined the vascular density change on different 
layers of frontal cortex. Vascular density was quantified on 4 different layers (100 mμ ) of 

frontal cortex over 3 weeks. The first column of density map array (Fig. 8(b)) displays 
vascular density variation over depth at day 1 before cocaine-induced angiogenesis happened. 
We found vascular density(FF) increase from 0 to 400 mμ  in which density of layer 4 (300-

400 mμ ) increased by 23.1% compared to Layer 1 (0-100 mμ ) from 0.09 ± 0.009 to 

0.1108 0.005± . This vessel density distribution over depth is consistent with Two-Photon 
Microscopy(TPM) and Optical Doppler Tomography(ODT) measurement reported previously 
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[14, 30]. The horizontal direction of density map array shows obvious density increase on all 
4 layers, suggesting angiogenesis was ongoing both on surface and deep tissue due to cocaine 
treatment. It also can be observed from Fig. 8(d) that vascular density(FF) of layer 1 to layer 
4 have similarly increased by ~0.014-0.02 after 3-week cocaine exposure. All layers present a 
linear vascular density increase over time, indicating that cocaine-induced angiogenesis is 
dependent on the time (e.g., accumulative dose) of chronic cocaine exposure. 

4. Discussion and conclusion 

Accurate quantification and detailed visualization of vascular network change in brain cortex 
are crucial for understanding neurovascular disease and progression. OCTA is a 3D imaging 
technique that can provide label-free, capillary-resolution angiograms based on decorrelation 
or variance of interferometric signals caused by moving red blood cells. Recent studies show 
that OCTA can be uniquely useful for identifying angiogenesis triggered by various diseases 
including cocaine toxicity and carcinogenesis. However, longitudinal tracking of 
angiogenesis progression remains technically challenging. Two problems are encountered that 
hinder unbiased tracking of angiogenesis: (1) time-to-time variation of selected data volume 
induced by brain geometric change or optical alignment, and (2) inaccurate vessel 
quantification caused by current vessel segmentation method. 

 

Fig. 8. a) Enhanced OCTA images illustrate vascular density increase over 3-weeks cocaine 
treatment. Newly grown microvasculature are indicated by red rows on zoom-in images. b) 
Vascular density maps on 4 different layers over 3 weeks. The vertical direction of this 
vascular density array presents layer index and horizontal direction presents treatment time. c) 
Statistic change of full volume vascular density. d) Time courses of vascular density change on 
different layers. 

In this paper, we have proposed a new angiogenesis progression tracking algorithm to 
address the problems and validated the effectiveness of the method in studying cocaine 
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induced angiogenesis. By employing a brain boundary detection method, our algorithm 
effectively eliminates the influence of brain geometric variation, which allows the data 
volume at different time point to be coregistered. Results in Fig. 7(e) demonstrate the efficacy 
of our brain boundary detection method for improving the consistency of vasculatural patterns 
over time. Moreover, the boundary detection method can be used for cortical layer 
segmentation, facilitating quantitative analysis of angiogenesis progression in different 
cortical layers. Our new vessel segmentation method enables effective reduction of errors in 
vessel quantification by combining top-hat enhancement and OOF. Comparative results 
clearly show that this new method significantly improves small vessel segmentation in 
comparison to Hessian matrix method that has been widely used for OCTA studies. The error 
of vessel density was decreased from ~34% to ~3.6% with the new method (Fig. 6(b)). For in-
vivo validation studies, we showed the effect of chronic cocaine treatment on the vascular 
networks, including a drastic increase of microvascular density in various cortical layers. 

As a limitation, our angiogenesis tracking method does not address the potential errors 
induced by the automatic skeletonization. The common drawbacks of automatic 
skeletonization such as spurious branch and missing skeleton may potentially bias the vessel 
density assessment. However, this type of error mainly occurs on large vessels and thus 
would not severely affect the tracking of angiogenesis which primarily leads to changes in 
capillary density. Additionally, the application of anisotropic diffusion filtering algorithm in 
our method can minimize the error by smoothing large vessel boundaries. In future studies, a 
more advanced skeletonization algorithm may be applied to further remove this type of errors 
[31]. Another drawback is that our vessel segmentation method identifies microvessels and 
large branch vessels separately due to attenuated responses of OOF at very large scales. This 
increases the number of parameters needed for manual sets dependent on the quality of the 
original OCTA data set. The introduction of anisotropic diffusion filtering might reduce the 
computational efficiency of our method. Future work may include simplifying the algorithm 
and improving computational speed. It should also be noted that our analysis of vessel density 
in different cortical layers may neglect the possible false positive errors induced by artifacts 
such as shadowgraphic projection from superficial large vessels on deeper layers. This 
problem can be mitigated by using a simple morphology operator to remove isolated pieces 
on vessel mask of deep layers. Another potential solution is to integrate advanced algorithms 
to reduce shadowing artifacts such as step-down exponential filter [2] and projection-resolved 
method [32]. Other improvements in the algorithm that can be made in future studies may 
include correction of refraction distortion [33], extension of limited depth of focus (DOF) 
[34] and application of a more reliable brain boundary detection algorithm [35]. 

In conclusion, we report an angiogenesis tracking approach based on top-hat enhancement 
and optimally oriented flux (OOF) algorithms to facilitate accurate segmentation of 
microvascular networks (including capillaries). Further incorporation of graph-search based 
brain boundary detection enables coregistration of 3D OCTA data sets from different time 
points for accurate vessel density assessment and quantification of their changes in various 
cortical layers. Application of this algorithm to in vivo longitudinal OCTA data sets of mouse 
cortical brain during chronic cocaine exposures demonstrates the utility of this method for 
accurate tracking of microvascular changes, which is clinically relevant for enhancing our 
understanding of disease progression and thus noninvasive assessment of therapeutic effects. 
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